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1. INTRODUCTION

When computing aerodynamic noise from moderate Mach number flows, compressil
flow equations are often solved numerically in a finite region of space containing the noi
sources and the near acoustic field [1]. However, whether this is done by direct numeri
simulation or with some modeling approximations (e.g., large-eddy simulation or unstea
Reynolds averaging), such simulations typically involve a range of length and time scal
and are therefore expensive. To cope with this, the computational domain is often trunca
in an acoustic region that is not too far beyond the unsteady flow. The sound at gree
distances is then computed by solving relatively simple acoustic equations.

Several numerical methods for extending the solution in this fashion are reviewed by Sl
et al. [2]. One approach is to use wave equation solutions formulated as surface integr:
so-called Kirchhoff or Ffowcs Williams—Hawkings methods [3-5]. The integral evaluatior
operations scale a®(N?) per “measurement.” So, if the acoustic field is needed at ¢
series ofN times in anN? volume, the total scaling i©(N®). Providing this data is at
times impractical due to computer memory limitations; and, though binning techniques ¢
available, application is complicated by the fact that data are required at retarded times

When extensive sound field data are needed it is at times better to solve a wave ec
tion (or similar set of acoustic equations) into the far field using direct methods. After ¢
initial transient, this approach scales likgN*) (three spatial dimensions plus time) for
O(N* measurementsThe implementation of the direct solver is simpler because the
data are now only needed sequentially. Existing direct methods are formulated either ac

! Note that there may be a large coefficient in this case if the required measurements are considerably sepa
in time.
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inhomogeneous wave equation (acoustic analogy), where a sound source is explicitly c
puted from the flow data, or as an unsteady boundary value problem, where data are prov
from the compressible flow computation on a common boundary [2]. Boundary conditic
formulations tend to be less general because the location and geometry of the comr
boundary between the flow and acoustic regions are problem dependent.

The method proposed in this note is classified as a direct method and so is not hampe
by the data management issues discussed above. It is novel because it requires neith
acoustic source to be computed nor a matching between the flow and acoustic solutions
principal strength is its simplicity, but its computational cost is reasonable and, as discus
above, can be advantageous when extensive acoustic data are required.

2. MATHEMATICAL FORMULATION

Consider a region of flong2s, that contains all the pertinent acoustic sourgesis a
subregion of the computational domafg, where the compressible flow equations are
solved. The objective is to calculate the sound at a distancefram

A method for doing this might utilize the fact that solutions of the flow equations als
satisfy Lighthill's equation [6],
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whereTi; = puiuj + (p— agop)aij — 1, anda is the sound speeg, is the densityp is
the pressuray; is the velocity, and;; is the viscous stress tensor. Givepat all points in
the flow, (1) can be solved for the sound field.

An alternative method proposed here, that does not redyiras to solve linearized
Euler equations with an additional term,
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In (2) and (3),0nsis the density from the Navier—Stokes solutiorfipando is a function
of space that is large ifes but has compact support ;. The purpose of the new term
is to drive the acoustic density toward the Navier—Stokes value. Note that the density
9 pns) from the Navier—Stokes solution is the only input required from the flow solver.
To demonstrate how the method works and determine requiremenea@me-dimensional
advection equation is considered that has obvious similarities to (2) and (3),
ap

a
ot aooafﬁ =—0(X)(p—png), X >Xs, 1>0, p(Xs, 1) = po(l). 4)

The pointxs € 925 represents the outer extent of the unsteady aerodynamic source flc
The functione is such that (x) =0 for X > x;, wherex; € Q2. corresponds to the outer
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edge of the computation domain. Our objective is to demonstratetiat) — pns(X, t)
for X > x. regardless ofp,(t), wherep, represents aerodynamic density fluctuations.
The solution of (4) fox > X is

1 f
p(X, 1) = pns(X, 1) + [po(X — 8xol) — pns(X, 1)] eXpl—g /U(E) délo )

Xs

Clearly, p(x, t) — pns(X, t) as the exponential factor approaches zero,&and, andx.
must be chosen to give the desired degree of accuracy. Large valde@fdong distances
betweerd Q2. andd2s) will remove the influence o, more effectively. The accuracy of
the method will depend upon the relative amplitude of near-field and acoustic field dens
fluctuations. These may be used to estimate the requirementopri5). A more precise
measure would be to compupe— pns 0n 92 and determine if the desired accuracy has
been achieved. Equation (5) then provides guidance for improving the accuracy.
Additional insight can be gained by solving (3). To do this a Fourier transform is define

[e¢]

/ p(x, e k*et dx dt. (6)
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The transformed Navier—Stokes densitys, is similarly defined. Applying (6) to (3) yields

(—® +iwo + a5 k?)p = iwo pns, (7)

wherek = |k|. Inverse transforming gives

_ PNs kX it
pX,t) = / - (i/o)(agok2/a)—w)e e ' dk dw. (8)

Expanding the denominator for largegives

x i /a2 K2 _ .
p(X, 1) = pns(X, t) + / s (a°° - w) e**e7“ dkdw + O(0 2, w?). (9)
o w

So to first order iy 1, p = pns Within Qs. BeyondQs there are no sources and the flow
is acoustic so the solution would be the same indthe oo limit if the compressible flow
solver were extended.

By time differentiating (9), it can be shown that the right hand side of (3) is an approxima
representation of the Lighthill source,
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FIG. 1. Dilatation = —d,p) from the flow solver and from the solution of (3) on a ray inclined at 86m
the end of the potential core: —, direct numerical simulation; - - -, proposed metfi®the distance along the
ray. Theo-factor is shown on the right axis, and the effective Q25 andx; € 92, are labeled.

This result shows that in some sense the proposed method is more similar to an acot
analogy than a Kirchhoff or matched boundary method. It is therefore not so sensitive
open integral surface or matched boundary necessary in some applications.

3. ARESULT

The results of a successful application of the proposed technique to compute the nc
from a subsonic round jet will be reported elsewhere [7]. To illustrate the method in th
application, the instantaneous dilatatien-{ d; o) on a ray extending from the jet is shown
here in Fig. 1. The directly computed solution and the solution of (3) agree well outsic
the turbulent flow. They deviate from each other within the source where the time rate
change of density is not necessarily equal to the negative dilatation. This was modelec
0o in (4). To converge overall sound pressure level statistics on an arc 60 jet radii from t
nozzle, the jet simulation required approximately 5,000 node hours on a 175 MHz IBM S
while the far-field sound required only 25 node hours on a cluster of 500 MHz Alpha-bas
PCs. The expense of the far-field sound computation was, therefore, essentially negligit

4. DISCUSSION

As discussed in the Introduction, the proposed method will be most useful when a lar
amount of sound field data are needed at a not too great of distance from the sou
For long-range propagation the expense increases considerably as will numerical er
that accumulate with distance. For these reasons semi-analytical methods whose cost
accuracy are not so constrained by the distance between the source and “measuren
point might in some cases be preferable despite the data management issues discuss
Section 1. It should also be noted that the proposed method is only useful when it is feas
to solve compressible equations for the sound. For very low Mach of number flow, whe
the length and time scales are such that compressible flow computations are impracti
incompressible solutions in conjunction with acoustic analogies are probably advantagec

While the jet application discussed above was successful, aeroacoustic problems are
ied and the issue of generality is difficult to address. For example, it is easy to anticip:
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situations where a mean flow might exist in the acoustic region. Examining the prop
modification of (2) for this case will be important and applicability to this case is poten
tially a strength of the method. It might also be possible to include nonlinear effects in t
“acoustic” equations. Such extensions and the evaluation of the method for specific aer
coustic problems will be the subject of future work.

5. CONCLUSIONS

A simple new method has been proposed for computing far-field sound in conjunctic
with near-field aeroacoustic computations. The only input necessary from the flow col
putation is the density; no acoustic sources need to be computed. Furthermore, the der
data are only required at a series of discrete times, rather than a range of retarded time
required by many methods. The proposed method has been successfully demonstrate
the context of a jet simulation.
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