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1. INTRODUCTION

When computing aerodynamic noise from moderate Mach number flows, compressible
flow equations are often solved numerically in a finite region of space containing the noise
sources and the near acoustic field [1]. However, whether this is done by direct numerical
simulation or with some modeling approximations (e.g., large-eddy simulation or unsteady
Reynolds averaging), such simulations typically involve a range of length and time scales
and are therefore expensive. To cope with this, the computational domain is often truncated
in an acoustic region that is not too far beyond the unsteady flow. The sound at greater
distances is then computed by solving relatively simple acoustic equations.

Several numerical methods for extending the solution in this fashion are reviewed by Shih
et al. [2]. One approach is to use wave equation solutions formulated as surface integrals,
so-called Kirchhoff or Ffowcs Williams–Hawkings methods [3–5]. The integral evaluation
operations scale asO(N2) per “measurement.” So, if the acoustic field is needed at a
series ofN times in anN3 volume, the total scaling isO(N6). Providing this data is at
times impractical due to computer memory limitations; and, though binning techniques are
available, application is complicated by the fact that data are required at retarded times.

When extensive sound field data are needed it is at times better to solve a wave equa-
tion (or similar set of acoustic equations) into the far field using direct methods. After an
initial transient, this approach scales likeO(N4) (three spatial dimensions plus time) for
O(N4) measurements.1 The implementation of the direct solver is simpler because the
data are now only needed sequentially. Existing direct methods are formulated either as an

1 Note that there may be a large coefficient in this case if the required measurements are considerably separated
in time.
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inhomogeneous wave equation (acoustic analogy), where a sound source is explicitly com-
puted from the flow data, or as an unsteady boundary value problem, where data are provided
from the compressible flow computation on a common boundary [2]. Boundary condition
formulations tend to be less general because the location and geometry of the common
boundary between the flow and acoustic regions are problem dependent.

The method proposed in this note is classified as a direct method and so is not hampered
by the data management issues discussed above. It is novel because it requires neither an
acoustic source to be computed nor a matching between the flow and acoustic solutions. Its
principal strength is its simplicity, but its computational cost is reasonable and, as discussed
above, can be advantageous when extensive acoustic data are required.

2. MATHEMATICAL FORMULATION

Consider a region of flow,Äs, that contains all the pertinent acoustic sources.Äs is a
subregion of the computational domain,Äc, where the compressible flow equations are
solved. The objective is to calculate the sound at a distance fromÄc.

A method for doing this might utilize the fact that solutions of the flow equations also
satisfy Lighthill’s equation [6],

∂2ρ

∂t2
− a2
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= ∂2Ti j
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whereTi j = ρui u j + (p−a2
∞ρ)δi j − τi j , anda∞ is the sound speed,ρ is the density,p is

the pressure,ui is the velocity, andτi j is the viscous stress tensor. GivenTi j at all points in
the flow, (1) can be solved for the sound field.

An alternative method proposed here, that does not requireTi j , is to solve linearized
Euler equations with an additional term,
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or, equivalently, the wave equation
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In (2) and (3),ρNS is the density from the Navier–Stokes solution inÄc andσ is a function
of space that is large inÄs but has compact support inÄc. The purpose of the new term
is to drive the acoustic density toward the Navier–Stokes value. Note that the density (or
∂tρNS) from the Navier–Stokes solution is the only input required from the flow solver.

To demonstrate how the method works and determine requirements onσ a one-dimensional
advection equation is considered that has obvious similarities to (2) and (3),

∂ρ

∂t
+ a∞

∂ρ

∂x
= −σ(x)(ρ − ρNS), x > xs, t > 0, ρ(xs, t) = ρo(t). (4)

The pointxs∈ ∂Äs represents the outer extent of the unsteady aerodynamic source flow.
The functionσ is such thatσ(x)= 0 for x> xc, wherexc ∈ ∂Äc corresponds to the outer
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edge of the computation domain. Our objective is to demonstrate thatρ(x, t)→ ρNS(x, t)
for x> xc regardless ofρo(t), whereρo represents aerodynamic density fluctuations.

The solution of (4) forx> xc is

ρ(x, t) = ρNS(x, t)+ [ρo(x − a∞t)− ρNS(x, t)] exp

[
− 1

a∞

xc∫
xs

σ(ξ) dξ

]
. (5)

Clearly,ρ(x, t)→ ρNS(x, t) as the exponential factor approaches zero, andσ, xs, andxc

must be chosen to give the desired degree of accuracy. Large values forσ (or long distances
between∂Äc and∂Äs) will remove the influence ofρo more effectively. The accuracy of
the method will depend upon the relative amplitude of near-field and acoustic field density
fluctuations. These may be used to estimate the requirements onσ by (5). A more precise
measure would be to computeρ− ρNS on ∂Äc and determine if the desired accuracy has
been achieved. Equation (5) then provides guidance for improving the accuracy.

Additional insight can be gained by solving (3). To do this a Fourier transform is defined

ρ̂(k, ω) = 1

16π4

∞∫
−∞

ρ(x, t)ei k·xeiωt dx dt. (6)

The transformed Navier–Stokes density, ˆρNS, is similarly defined. Applying (6) to (3) yields(−ω2+ iωσ + a2
∞k2

)
ρ̂ = iωσρ̂NS, (7)

wherek= |k|. Inverse transforming gives
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Expanding the denominator for largeσ gives
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σ

(
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ω
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)
e−i k·xe−iωt dk dω + O(σ−2, ω2). (9)

So to first order inσ−1, ρ= ρNS within Äs. BeyondÄs there are no sources and the flow
is acoustic so the solution would be the same in theσ→∞ limit if the compressible flow
solver were extended.

By time differentiating (9), it can be shown that the right hand side of (3) is an approximate
representation of the Lighthill source,
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FIG. 1. Dilatation (=−∂tρ) from the flow solver and from the solution of (3) on a ray inclined at 60◦ from
the end of the potential core: —, direct numerical simulation; - - -, proposed method.s is the distance along the
ray. Theσ -factor is shown on the right axis, and the effectivexs ∈ ∂Äs andxc ∈ ∂Äc are labeled.

This result shows that in some sense the proposed method is more similar to an acoustic
analogy than a Kirchhoff or matched boundary method. It is therefore not so sensitive to
open integral surface or matched boundary necessary in some applications.

3. A RESULT

The results of a successful application of the proposed technique to compute the noise
from a subsonic round jet will be reported elsewhere [7]. To illustrate the method in this
application, the instantaneous dilatation (=−∂tρ) on a ray extending from the jet is shown
here in Fig. 1. The directly computed solution and the solution of (3) agree well outside
the turbulent flow. They deviate from each other within the source where the time rate of
change of density is not necessarily equal to the negative dilatation. This was modeled as
ρo in (4). To converge overall sound pressure level statistics on an arc 60 jet radii from the
nozzle, the jet simulation required approximately 5,000 node hours on a 175 MHz IBM SP,
while the far-field sound required only 25 node hours on a cluster of 500 MHz Alpha-based
PCs. The expense of the far-field sound computation was, therefore, essentially negligible.

4. DISCUSSION

As discussed in the Introduction, the proposed method will be most useful when a large
amount of sound field data are needed at a not too great of distance from the source.
For long-range propagation the expense increases considerably as will numerical errors
that accumulate with distance. For these reasons semi-analytical methods whose cost and
accuracy are not so constrained by the distance between the source and “measurement”
point might in some cases be preferable despite the data management issues discussed in
Section 1. It should also be noted that the proposed method is only useful when it is feasible
to solve compressible equations for the sound. For very low Mach of number flow, where
the length and time scales are such that compressible flow computations are impractical,
incompressible solutions in conjunction with acoustic analogies are probably advantageous.

While the jet application discussed above was successful, aeroacoustic problems are var-
ied and the issue of generality is difficult to address. For example, it is easy to anticipate
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situations where a mean flow might exist in the acoustic region. Examining the proper
modification of (2) for this case will be important and applicability to this case is poten-
tially a strength of the method. It might also be possible to include nonlinear effects in the
“acoustic” equations. Such extensions and the evaluation of the method for specific aeroa-
coustic problems will be the subject of future work.

5. CONCLUSIONS

A simple new method has been proposed for computing far-field sound in conjunction
with near-field aeroacoustic computations. The only input necessary from the flow com-
putation is the density; no acoustic sources need to be computed. Furthermore, the density
data are only required at a series of discrete times, rather than a range of retarded times as
required by many methods. The proposed method has been successfully demonstrated in
the context of a jet simulation.
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